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Plan
Introduction

Absorptive and dispersive contributions to mixing and CP violation (CPV)
Phenomenology of CPV in mixing

Today: the “superweak limit” - a constrained fit

parametrization of indirect CPV with one universal weak phase

Future: departure from the superweak limit

two universal weak phases (absorptive and dispersive) suffice

How large can indirect CPV be in the SM?
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Introduction

In the SM, CP violation (CPV) in mixing enters at O(VcbVub/VcsVus) ∼ 10−3, due to
weak phase γ

In view of current and future (LHCb, Belle II; HL-LHC?) improvements in CPV mixing
measurements, this statement needs to be sharpened

how large is the QCD uncertainty?

this has implications for how we should parametrize CPV in mixing

how large is the current window for New Physics (NP) in mixing CPV?
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INTRODUCTION

● CP violation in DF=2 
processes is the most 
sensitive probe of 
NP, reaching scales 
of O(105) TeV

● CPV in D mixing gives 
best bound after e

K

● How far can we push 
it?



Review of formalism for CPV in mixing:

Mixing of strong interaction eigenstates D̄0, D0 due to transition amplitudes

⟨D0|H|D0⟩ = M12 −
i

2
Γ12 , ⟨D0|H|D0⟩ = M∗

12 −
i

2
Γ∗
12

D meson mass eigenstates,

|D1,2⟩ = p|D0⟩± q|D0⟩

CP conserving observables

x =
m2 −m1

Γ
, y =

Γ2 − Γ1

2Γ



M12 is dispersive mixing: due to long-distance exchange of off-shell intermediate
states; and short-distance effects

long distance dominates in SM

significant short distance effect would be new physics (NP)

Γ12 is absorptive mixing: due to long distance exchange of on-shell intermediate states

Γ12 ∼=
∑

f

⟨D0 |HW | f⟩ ⟨ f |HW |D0⟩

The “theoretical" mixing parameters

x12 ≡ 2|M12|/Γ, y12 ≡ |Γ12|/Γ, φ12 ≡ arg(M12/Γ12)

Relations to CP conserving observables:

|x| = x12 +O(CPV2), |y| = y12 +O(CPV2)



CPV in mixing via Γ12 and via long distance part ofM12 requires
subleading decay amplitudes containing weak phases:

SM: VcbV ∗
ub suppressed amplitudes containing eiγ

NP: subleading decay amplitudes with new weak phases

assume only singly Cabibbo suppressed (SCS) decays contribute

CF/DCS contributions negligble in SM

NP with non-negligible DCPV in DCS/CF decays, which evades ϵK bounds, must
be extremely exotic Bergmann, Nir



Two kinds of indirect CPV

CPVMIX: CPV in pure mixing due to φ12 ̸= 0 ⇒
interference between the dispersive and absorptive mixing amplitudes

φ12 ̸= 0 ⇒
∣

∣

∣

∣

q

p

∣

∣

∣

∣

̸= 1

e.g., a non-vanishing semileptonic CP asymmetry, ASL ∝ sin θ12

CPVINT: CP violation in the interference of decays with and without mixing



CPVINT observable for CP eigenstate final state, f = f̄ :

φλf
= arg

(

q

p

Āf

Af

)

CPVINT observable pairs for non-CP eigenstate final states, f ̸= f̄ :

φλf
= arg

(

q

p

Āf

Af

)

, φλf̄
= arg

(

q

p

Āf̄

Af̄

)

φλf
,φλf̄

̸= 0 ⇒ CPVINT time-dependent CP asymmetries, e.g. in

SCS decays (AΓ): D0(t) → K+K− , π+π− ̸= D̄0(t) → K+K− , π+π−

DCS decays: D0(t) → K+π− ̸= D̄0(t) → K−π+

these asymmetries contain both CPVMIX and CPVINT contributions



The superweak limit



CPVINT in the “superweak” limit

neglect effects of subleading decay weak phases in indirect CPV:
O(xAd

CP, y A
d
CP), where Ad

CP is the direct CP asymmetry

suppressed by x, y

Ad
CP CKM suppressed in SM

allowing for NP in SCS decays, Ad
CP bounds ⇒ this is still an excellent

approximation compared to current experimental indirect CPV errors

in time-integrated CP asymmetries both indirect and direct CPV contribute

keep leading direct CPV contribution Ad
CP

neglect subleading direct CPV effects entering the indirect CPV contribution

in the superweak limit φ12 ̸= 0 is dispersive, entirely due to short-distance NP inM12

(SM short-distance is negligible)

φ12 = φM
12 , φΓ

12 = 0



φ12 is only source of CPVINT, which is universal

φλf
→ φ, universal CPVINT

CPVINT and CPVMIX related: Ciuchini et al ’07; Grossman, Perez, Nir ’09; A.K.,
Sokoloff ’09

tan 2φ ≈ −
x2
12

x2
12 + y212

sin 2φ12

tanφ ≈
(

1−
∣

∣

∣

∣

q

p

∣

∣

∣

∣

)

x

y

e.g., ∆Yf = −AΓ = −x12 sinφ12

with only one CPV phase φ12 controlling all indirect CPV, superweak fits to CPV data
are much more constrained than fits in which φ and |q/p| are independent

fits assume no direct CPV in doubly Cabibbo suppressed (DCS) decays
D0 → K+π−



Fit results:

HFAG, NEW : φ12 [rad] = 0.017+0.035
−0.03 (1σ); [−0.05,+0.14] 95% cl

UTfit : φ12 [rad] = 0.003± 0.03 (1σ); [−0.07,+0.21] 95% cl

φ vs |q/p| in superweak fit vs. fit with independent |q/p|, φ
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Departure from the superweak limit



Departure from the superweak limit

we are transitioning to the < 10% era on φ12

at the coming level of precision, will the superweak limit continue to be a good
approximation?

what is the best way to parametrize deviations from the superweak limit?

how large can the SM contribution to indirect CPV be?



most general final-state specific parametrization: physical absorptive and dispersive
contributions to φ12

f = CP eigenstate:

φM
12 f ≡

1

2
arg

[

M12

M∗
12

(

Af

Af

)2
]

, φΓ
12 f ≡

1

2
arg

[

Γ12

Γ∗
12

(

Af

Af

)2
]

CPVMIX φ12 = φM
12 f − φΓ

12 f

non-CP eigenstates f , f̄ :

φM
12 f ≡

1

2
arg

[

M12

M∗
12

AfAf̄

AfAf̄

]

, φΓ
12 f ≡

1

2
arg

[

Γ12

Γ∗
12

AfAf̄

AfAf̄

]

CPVMIX φ12 = φM
12 f − φΓ

12 f



Beyond superweak with a universal parametrization

in general,

M12 = M0
12 + δM12,SM + δM12,NP, Γ12 = Γ0

12 + δΓ12,SM + δΓ12,NP

M0
12, Γ

0
12 ∝ (λs − λd)

2; δM12,SM, δΓ12,SM ∝ (λs − λd)λb

(in superweak δM12,SM = δΓ12 = 0)

define “theoretical” phase convention independent universal CPV phases

φΓ
12 ≡ arg

(

Γ12

Γ0
12

)

, φM
12 ≡ arg

(

M12

M0
12

)

, φ ≡ arg

(

q

p

1

Γ0
12

)

arg(Γ0
12) = arg(M0

12) = arg[(λs − λd)2] provides a “reference ruler” for the no CPV
direction in the complex plane

φΓ
12 takes into account the weak phases of the subleading amplitudes in all decays



Define the misalignment between the general parametrization and the “theoretical" universal
phases

δφf ≡ φΓ
12 f − φΓ

12 = φM
12 f − φM

12 = φ− φλf

in CF/DCS decays with no NP, the misalignment is known and negligible,
e.g., in CPVINT in D0 → K±π∓, D0 → KSπ+π−

φλf
= φ, φΓ

12 f = φΓ
12, φM

12 f = φM
12

δφf is related to direct CPV: δφf = Adir
CP (D → f) cot δ, δ is a strong phase

D0 → K+K−,π+π−: Adir
CP ! few × 10−3 ⇒ δφf ! few × 10−3

⇒ small misalignment compared to expected BelleII/LHCb sensitivity:
δφ ≈ 3◦ ≈ 0.05 [rad]



In general, in SM: φΓ
12 = O(1/ϵ), ϵ ∼ 0.2 characterizes nominal U-spin breaking

⇒
δφf

φΓ
12

= O(ϵ) in SCS D0 decays

yielding parametric suppression of misalignment relative to φΓ
12

therefore, for expected Belle/LHCb sensitivity, can account for deviation from
superweak limit with only one additional universal CPV phase beyond φ12,
e.g. φΓ

12

fit mixing data to φΓ
12 and φ12 or, equivalently, φM

12 and φΓ
12

in practice, equivalent to “traditional” two parameter fit for φ, |q/p||

back to a less constrained fit, but Belle/LHCb improved sensitivity will overcome
this



Examples

Time-dependent CPV in D0 → KSπ+π−, assuming no NP in CF/DCS, yields a
measurement of x, y, |q/p|, φ: (|x| = x12, |y| = y12)

use the relations
∣

∣

∣

∣

q

p

∣

∣

∣

∣

− 1 ≈
|x||y|

x2 + y2
sinφ12

tan 2(φ+ φΓ
12) ≈ −

x2

x2 + y2
sin 2φ12

φ12 = φM
12 − φΓ

12

to obtain the fundamental dispersive and absorptive universal phases φM
12 , φΓ

12

Time-dependent CP asymmetry in SCS decays to a CP eigenstate,

AΓ = −∆Yf ≈ |x| sinφM
12 ,

analogous relation holds for D0 → KSπ+π− time-integrated, time-dependent CP
asymmetries: ∝ sinφM

12
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● Expected errors w. LHCb upgrade:

– dx=1.5 10-4, dy=10-4, d|q/p|=10-2, df=3° (from 
K

s
pp); dy

CP
=dAG=4 10-5 (from K+K-)

● Allows to experimentally determine fG12
 with 

a reach on CPV @ the degree level:

– df
M12

 = ± 1° (17 mrad) and                         

dfG12 
= ± 2° (34 mrad) @ 95% prob.

– L>105 TeV

CHARM CPV @ LHCb UPGRADE



Another example: time-integrated tagged, untagged CP asymmetries for DCS/CF
decays, e.g. f = K+π−, f̄ = K−π+

Atag,DCS (CF)
CP ≡

∫

dt(Γ[D0(t) → f̄(f)]− Γ[D̄0(t) → f(f̄)])
∫

dt(Γ[D0(t) → f̄(f)] + Γ[D̄0(t) → f(f̄)])

Auntag
CP ≡

∫

dt(Γ[D0(t) → f̄ ] + Γ[D0(t) → f ]− Γ[D̄0(t) → f̄ ]− Γ[D̄0(t) → f ])
∫

dt(Γ[D0(t) → f̄ ] + Γ[D0(t) → f ] + Γ[D̄0(t) → f̄ ] + Γ[D̄0(t) → f ])

For Rf ≡ |ĀDCS
f /ACF

f |, and ∆f the strong phase between DCS and CF, obtain

Atag,CF
CP

Rf

+RfA
tag,DCS
CP = −2|x| sinφM

12 cos∆f

1 +R2
f

Rf

Auntag
CP =

Atag,CF
CP

Rf

−RfA
tag,DCS
CP = −2|y| sinφΓ

12 sin∆f

analogous relations hold for time-dependent CP asymmetries in SCS decays to
non-CP eigenstates, e.g. D0 → ρπ, K∗K, with Rf ≡ |Af̄/Af | = O(1) and
A

tag,CF (DCS)
CP → ∆Yf (f̄)



How large can indirect CPV be in the SM?



U-spin decomposition of Γ12 andM12 in the SM

using CKM unitarity,

Γ12 =
(λs − λd)2

4
Γ5 +

(λs − λd)λb

2
Γ3 +

λ2
b

4
Γ1

M12 =
(λs − λd)2

4
M5 +

(λs − λd)λb

2
M3 +

λ2
b

4
M1

Γ5,3,1, M5,3,1 are ∆U3 = 0 elements of U-spin multiplets, e.g.

Γ5 = Γss + Γdd − 2Γsd ∼ (s̄s− d̄d)2 ⇒ ∆U = 2 (5 plet) ⇒ O(ϵ2), CF/DCS/SCS

Γ3 = Γss − Γdd ∼ (s̄s− d̄d)(s̄s+ d̄d) ⇒ ∆U = 1 (3 plet) ⇒ O(ϵ), SCS

Γ0
12 ∝ Γ5, M0

12 ∝ M5 are CP conserving ⇒ y12, x12 or y, x

δΓ12 ∝ Γ3, δM12 ∝ M3 ⇒ CPV via γ = arg(λb)

neglect O(λ2
b) effects of Γ1,M1



the U-spin decomposition yields the rough estimate

φΓ
12 ≡ arg

(

Γ12

Γ0
12

)

≈ Im

(

2λb

λs − λd

Γ3

Γ5

)

∼
∣

∣

∣

∣

λb

θc

∣

∣

∣

∣

sin γ ×
1

ϵ

and similarly for φM
12

“nominal” U-spin breaking,

ϵ ∼ 0.2 ⇒ φΓ
12 ∼ φM

12 ∼ 3× 10−3

compared to φ12 ∈ [−0.07,+0.08] (HFAG), [−0.07,+0.21] (UTfit) at 95% c.l.
from “superweak” fit

allowing for large uncertainty in this estimate, current CPV measurements
⇒ O(10) window for NP



A more refined analysis of φΓ
12 in the SM

in φΓ
12 trade Γ5 ∼= Γ0

12 for y × Γ

shifts explicit ϵ dependence from 1/ϵ → ϵ, because y = O(1/ϵ2), Γ3 = O(ϵ)

|φΓ
12| =

∣

∣

∣

∣

sin γ λb (λs − λd)

2y

∣

∣

∣

∣

|Γ3|
Γ

≈ 0.005
|Γ3|
Γ

where Γ3 = O(ϵ), and is due to SCS decays:

Γ3 =
2

(λs − λd)λb

∑

f

A(D̄0 → f)SCS A∗(D0 → f)SCS

consider U-spin decomposition of the SCS and CF decay amplitudes

two-body decays account for ≈ 75% of all hadronic D0 decays, with
D0 → V P, V V, PP, AP accounting for ≈ 33%, 12%, 12%, 12%, respectively
(Cheng, Chiang)

comparison of D0 → V P, V V, PP, AP branching ratios, direct CP asymmetries
with U-spin decompositions could tell us how large a |Γ3|/Γ ratio is plausible



currently,
|Γ3|
Γ

∼ 1 ⇒ φΓ
12 ∼ 0.005

is plausible, consistent with our more naive estimate

for δφf in SCS decays, this yields

∣

∣

∣

∣

∣

φΓ
12

δφf

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

λ2
s sin γ

2y

∣

∣

∣

∣

1

Re(rf )

|Γ3|
Γ

∼
λ2
s

2y
≈ 4,

consistent with the δφf/φΓ
12 = O(ϵ) parametric suppression

- rf is the ratio of subleading to leading D0 → f decay amplitudes, rf ∼ P/T ∼ 1

improved precision, particularly for Ad
CP(D

0 → V P ) and Br(D0 → V P ) modes will
be most welcome, since V P modes are expected to contribute substantially to Γ3

(based on their relative importance in Γ)

this would allow a sharper comparison of prominent U-spin amplitudes in Γ3 and Γ



Conclusion

we are transitioning to a very exciting period for CPV inD −D mixing

currently we have an O(10) window to NP

we have introduced a new universal parametrization that captures the departure from
the superweak limit at a level of precision that is appropriate for the sensitivity
expected in the next generation experiments at LHCb, Belle II

it requires one additional universal phase, e.g. φΓ
12

final state specific phases associated with direct CPV are not required,
in the absence of a surprisingly large Adir

CP measurement

If there is NP in CPV, it is almost certainly short distance in φM
12

the parametrization allows separate measurements of φM
12 and φΓ

12



mapping out the branching ratios and direct CP asymmetries in a large number of D0

decay modes is important

this will directly impact our understanding of how large absorptive CPV in mixing
can be in the SM, with our current estimate being φΓ

12 = O(0.005)

it could also help us further understand how large the dispersive SM contribution
(φM

12) could be, by relating it to the absorptive one using dispersion relations -
more challenging

a simple U-spin based estimate yields φM
12 ∼ φΓ

12

In the Belle II / LHCb era we roughly expect

δφM
12 ≈ 0.017, δφΓ

12 ≈ 0.034 @95%c.l.

to be compared with the current window
φ12 ∈∈ [−0.07,+0.08] (HFAG, new); [−0.07,+0.21] (UTfit) 95%c.l.

(current errors on φM
12 , φΓ

12 are much larger) and φM
12 ∼ φΓ

12 = O(0.005) in SM

at HI- LUMI (LHCb × 100) would be sensitive to SM indirect CPV



Backup slides on U-spin decomposition



U-spin structure of ∆C = 1 Hamiltonian

H1 : ∆U = 1 triplet ∝ c̄u (d̄s, s̄s− d̄d, s̄d)

H0 : ∆U = 0 singlet ∝ c̄u (ss+ d̄d)

Possible final state U -spin quantum numbers

triplet f1 (U = 1, U3 = 0,±1), singlet f0 (U = 0, U3 = 0)

D̄0 → PP example, with CP eigenstates:

f1 =
K+K− − π+π−

√
2

, K+π−, K−π+; f0 =
K+K− + π+π−

√
2

D̄0 → V P example, non-CP eigenstates (D̄0 → f1, f0; f̄1, f̄0):

f1 =
K∗+K− − ρ+π−

√
2

, K∗+π−, K−ρ+; f0 =
K∗+K− + ρ+π−

√
2

f̄1 =
K∗−K+ − ρ−π+

√
2

, K+ρ−, K∗−π+; f̄0 =
K∗−K+ + ρ−π+

√
2



there are two decay amplitudes at 0’th order in SU(3) breaking,
where |0⟩ is U-spin singlet D0:

t0[f1] ∝ ⟨f1|H1|0⟩, p0[f0] ∝ ⟨f0|H0|0⟩

there are three decay amplitudes at 1st order in SU(3) breaking, O(ϵ):

s1[f0] ∝ ⟨f0|(H1×Mϵ)0|0⟩, t1[f1] ∝ ⟨f1|(H1×Mϵ)1|0⟩, p1[f1] ∝ ⟨(f1×Mϵ)0|H0|0⟩

Mϵ is the U-spin breaking “spurion"

Mϵ connects ∆U = 1 operator H1 with singlet f0 final state,
and ∆U = 0 operator H0 with triplet final state f1

amplitudes for CP conjugate final states (non-CP eigenstates):
t0[f̄1], p0[f̄0] ; s1[f̄0]ϵ, t1[f̄1], p1[f̄1]



The SCS decay amplitudes to O(ϵ), for f1, f0 final states (U3 = 0),

√
2A(D̄0 → f0) = (λs − λd) s1[f0] ϵ− λb 2 p0[f0] +O(ϵ2)

√
2A(D̄0 → f1) = (λs − λd) t0[f1]− λb p1[f1] ϵ+O(ϵ2)

and similarly for D̄0 → f̄0, f̄1

The CF/DCS decay amplitudes, for f1 final states (U3 = ±1)

ACF(D̄
0 → f1) = VcsV

∗
ud(t0[f1]−

1

2
t1[f1] ϵ+O(ϵ2))

ADCS(D̄
0 → f1) = VcdV

∗
us(t0[f1] +

1

2
t1[f1] ϵ+O(ϵ2))

and similarly for D̄0 → f̄1

the ϵ ’s are “factored out” to keep track of orders in U-spin breaking. Thus nominally

t0 ∼ p0 ∼ s1 ∼ p1 ∼ t1



Expressed as exclusive sums over all decays, obtain

Γ3

Γ
= −

∑

fCP
Γ3(fCP) +

∑

f,f̄ Γ3(f, f̄)
∑

f1,CP
|t0[f1]|2 +

∑

f1,f̄1
(|t0[f1]|2 + |t0[f̄1]|2) +O(ϵ)

where
Γ3(fCP) = 4Re(p∗0[f0] s1[f0]ϵ) + 2Re(t∗0[f1] p1[f1]ϵ)

Γ3(f, f̄) = 4Re(p∗0[f0] s1[f̄0]ϵ)+ 4Re(p∗0[f̄0] s1[f0]ϵ)+ 2Re(t∗0[f1] p1[f̄1]ϵ)+ 2Re(t∗0[f̄1] p1[f1]ϵ)

information about the amplitude ratios

s0[f0]ϵ

t0[f1]
,

p0[f0]

t0[f1]

follows from branching ratio and direct CP asymmetry measurements

as more of these ratios are constrained, knowledge of how large |Γ3|/Γ can
reasonably be improves



for the branching ratios

∣

∣

∣

∣

A(D0 → π+π−)

A(D0 → K+K−)

∣

∣

∣

∣

= (1.82± 0.02)−1 ∼ 1 + 2Re

(

s1ϵ

t0

)

+O(ϵ2)

and similarly for (Grossman, Robinson ’12)

∣

∣

∣

∣

A(D0 → π+ρ−)

A(D0 → K+K∗−)

∣

∣

∣

∣

= 1.59± 0.10,

∣

∣

∣

∣

A(D0 → π−ρ+)

A(D0 → K−K∗+)

∣

∣

∣

∣

= 1.33± 0.05

above suggests that s1ϵ/t0 ∼ 0.25− 1 in PP , and is smaller in V P than PP , but
precise statements are difficult due to unknown strong phases



for SCS PP direct CP asymmetries

Adir
CP(D

0 → π+π−,K+K−) ≤ O(few × 0.1%) ∼ ±2

∣

∣

∣

∣

λb

λs

∣

∣

∣

∣

Im

(

p0
t0

)

sin γ +O(ϵ).

for SCS V P direct CP asymmetries, have an HFAG bound

ACP(D
0 → π+π−π0) < −0.0023± 0.0042

and a new LHCb result

∆ACP ⇒ p0 ! t0 in PP modes



Examples of CPVINT

SCS decays to CP eigenstates, e.g. D0 → K+K− , π+π−

Γ(D0(t) → f) ∝ exp[−Γ̂D0→f t], Γ(D0(t) → f) ∝ exp[−Γ̂
D0→f

t]

Time-dependent CP asymmetry: AΓ ≡ (Γ̂D0→f − Γ̂
D0→f

)/2Γ ̸= 0

AΓ from CPVINT ∝ sinφλf
, AΓ from CPVMIX ∝ |q/p|− |p/q|

DCS decays to non-CP eigenstates, e.g. wrong sign D0 → K+π− vs D̄0 → K−π+

Γ(D0(t) → K+π−) ∝ e−ΓDt(a++b+t+c+t2), Γ(D̄0(t) → K−π+) ∝ e−ΓDt(a−+b−t+c−t2)

Time-dependent CP asymmetries: b+ − b− ̸= 0, c+ − c− ̸= 0

φλf
+ φλf̄

̸= 0 ⇒ b+ − b− ̸= 0 from CPVINT

|q/p|− |p/q| ̸= 0 ⇒ b+ − b− ̸= 0 from CPVMIX
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